options(scipen = 999)
library(tidyverse)
library(urbnthemes)
library(lubridate)
set_urbn_defaults(style = "print")
mt <- readRDS("X:/reconstruct/mt-louisville.Rdata")
walk(paste0(here::here("functions"), "/",
list.files(here::here("functions"))),
source)
mt %>%
filter(geo_level == "County") %>%
filter(yyyymm > 200702) %>%
get_moving_average(grouping_var = county_name,
var = total_sale_med) %>%
ggplot(aes(x = date, y = moving_average,
group = county_name, color = county_name)) +
geom_line() +
scale_y_continuous(limits = c(0, 180000),
breaks = 0:9 * 20000,
expand = expand_scale(mult = c(0, 0.001)),
labels = scales::dollar) +
scale_x_date(limits = c(ymd("2007-03-01"), ymd("2019-04-01")),
expand = c(0, 0),
date_breaks = "1 year",
date_labels = "%Y") +
labs(x = NULL,
y = "Total sales: 12-month moving average")
mt <- mt %>%
mutate(year = str_sub(yyyymm, 1, 4))
sales_table <- mt %>%
filter(year == "2018",
geo_level == "County") %>%
group_by(county_name) %>%
summarize(Total = weighted.mean(x = total_sale_med,
w = total_sale_count,
na.rm = TRUE),
Resale = weighted.mean(x = resale_sale_med,
w = resale_count,
na.rm = TRUE),
`New construction` = weighted.mean(x = new_constr_med,
w = new_constr_count,
na.rm = TRUE),
REO = weighted.mean(x = reo_sale_med,
w = reo_sale_count,
na.rm = TRUE)) %>%
gather(key = "sale_type", value = "median", -county_name) %>%
mutate(color = factor(ifelse(sale_type == "Total",
1,
0)))
sales_table %>%
graph_sales_type(county = "Jefferson")
sales_table %>%
graph_sales_type(county = "Clark")
sales_table %>%
graph_sales_type(county = "Floyd")
mt %>%
filter(geo_level == "County") %>%
group_by(date) %>%
summarize(`New construction` = sum(new_constr_count, na.rm = TRUE),
Resale = sum(resale_count, na.rm = TRUE),
REO = sum(reo_sale_count, na.rm = TRUE),
`Short sale` = sum(short_sale_count, na.rm = TRUE),
Other = sum(other_sale_count, na.rm = TRUE)) %>%
gather(key = "sale_type", value = "count", -date) %>%
graph_sales_composition(county = "All")
comp_table <- mt %>%
filter(geo_level == "County") %>%
group_by(date, county_name) %>%
summarize(`New construction` = sum(new_constr_count, na.rm = TRUE),
Resale = sum(resale_count, na.rm = TRUE),
REO = sum(reo_sale_count, na.rm = TRUE),
`Short sale` = sum(short_sale_count, na.rm = TRUE),
Other = sum(other_sale_count, na.rm = TRUE),
Total = sum(total_sale_count, na.rm = TRUE)) %>%
gather(key = "sale_type", value = "count", -date, -county_name)
comp_table %>%
graph_sales_composition(county = "Jefferson")
comp_table %>%
graph_sales_composition(county = "Clark",
start_date = "2009-01-01")
comp_table %>%
graph_sales_composition(county = "Floyd",
start_date = "2011-01-01")